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The rapid advancement of artificial intelligence (AI) models has increased the demand for 
high-precision, energy-efficient AI edge chips. The support of floating-point (FP) 
processing is essential for high-precision neural network (NN) training and inference. 
Nevertheless, it incurs higher energy and area overhead due to complex FP multiplication 
and accumulation (MAC) operations. Digital compute-in-memory (DCIM) and 
floating-point CIM (FP-CIM) [1-10] have emerged as a promising technique to enhance 
energy efficiency with higher accuracy. Previous FP-CIM implementations [1-7] have 
achieved good performance through various alignment schemes and computing 
processes. However, as illustrated in Figure 14.3.1, implementing digital-domain FP-CIM 
faces several challenges: (1) the difficulty of balancing FP-computation precision and 
input reusability, as alignment operations are unfriendly to CIM structure; (2) large 
performance loss or area overhead due to peripheral parallel-alignment schemes; and (3) 
huge dynamic energy consumption of digital MAC circuits induced by low sparsity of 2's 
complement (2C) negative weights, coupled with additional sign bit computation overhead 
in digital CIM. This work presents a hierarchical Broadcast-Alignment-Non-2’s 
Complement MAC (B-A-N2CMAC) true FP-CIM macro featuring (1) a broadcast input and 
embedded light-convertor structure to enable BF16/INT8 MAC operations with improved 
input reusability; (2) an embedded area-efficient adaptive-alignment scheme with 
dual-bit-serial MAC; and (3) a format-mixed N2CMAC flow to reduce circuit dynamic 
activity and signed computation overhead. A 28nm 64-kb B-A-N2CMAC true FP-CIM 
macro is fabricated to support FP-MAC operations with BF16 and INT8. This CIM macro 
achieved an energy efficiency of 62.84TFLOPS/W@BF16 and 90.15TOPS/W@INT8. 

Figure 14.3.2 illustrates the overall structure of the proposed B-A-N2CMAC true FP-CIM 
macro, which includes 16 triple-stacked arrays (TS-As), a hierarchical input buffer, a 
calibrated accumulator & quantizer (CA&Q), and peripheral circuits. Each TS-A computes 
one output channel and comprises (1) an embedded serial input convert unit (ESICU), (2) 
a 16-row × 256-column 6T SRAM array, and (3) a format-mixed non-2’s complement MAC 
unit (N2CMACU). Unlike previous true FP-CIM designs [2,3], global floating-point/integer 
inputs (Gin) from hierarchical input buffer can be reused by 16 TS-As to maximize the 
array utilization rate. Each Gin consists of an 8-bit parallel exponent input (Ein) and a 2-bit 
serial mantissa input (Min). ESICU, which contains an align-signal generator (ASG) and 
16 light-converters (LCs), is designed to achieve the local 2b-serial alignment of Gin 
according to the readouts of exponent data from the SRAM array. This approach 
eliminates the need for area-hungry subtractors and barrel shifters, compared to 
traditional digital alignment methods [1,2,5]. To fully utilize the sparsity of negative weights 
with small absolute values, an N2CMAC computation flow is proposed to enable 
weight-mapping with sign-magnitude data format. In this flow, a 
signed-floating-point/integer MAC is divided into an unsigned MAC and a compensation 
performed in TS-A and CA&Q, respectively. The CIM macro supports four modes: 1 mode 
for conventional read/write, and 3 modes for computation (BF16A, BF16B, and INT8). 
BF16A and BF16B modes differ from the preserved bit-width of the aligned mantissa, 
10bits for BF16A and 8bits for BF16B, which are sufficient to handle the target 
CNN/Transformer networks. 

Figure 14.3.3 illustrates the structure of ESICU and the embedded adaptive 2b-serial 
alignment scheme. Inside ESICU, the ASG consists of 16 exponent adders (EAs), a 
maximum value finder (MVF), a shift destination tracer (SDT), and 16 equality 
comparators (ECs). The LC consists of an adaptive-reset register chain (ARRC), a 
self-alignment controller (SAC), and an output select & inverse unit (OSIU). After the 
generation of exponent sum and maximum sum value through EAs and MVF, each EC 
compares the SDT value with the corresponding exponent sum (SUM[8:1]) and then 
generates shift control signals (Shift0-15) for the LCs. The SDT value is first determined 
by the maximum sum, and then it decreases by 1 each cycle. When signal Shift = 0, the 
ARRC is in the “Store” state, sequentially storing the serial Min values; when Shift = 1, the 
ARRC switches to the “Shift” state, sequentially outputting the previously stored Min 
values (shifting two bits per cycle). The OSIU then generates OUT[1:0] and registers it as 
local input Lin[1:0] for N2CMAC operations. The deployment of the proposed adaptive 

2b-serial alignment scheme can reduce area overhead by 36.23%, compared to 
traditional subtractor and barrel shifter circuits-based alignment schemes [1-6]. 

Figure 14.3.4 illustrates the detailed implementation of format-mixed N2CMAC 
computation flow, along with the memory bank configuration and waveform for 3 
computation modes. Unlike the previous 2’s complement-based MAC operations [11-13], 
weights are stored in the TS-As with sign-magnitude format. Format-mixed N2CMAC 
computation flow computes MAC results of 2's complement inputs and sign-magnitude 
weights, with the output in 2's complement form. The computation flow consists of 4 steps. 
Firstly, the hierarchical input buffer provides Gin, including 8b parallel Exp (BF16A/B 
mode) and 2b serial Man/IN (BF16A/B and INT8 mode). Secondly, the LC serially 
converts Gin, performing serial alignment (BF16 mode) and input sign inversion 
(BF16/INT8 mode). Thirdly, the digital multiply unit (DMU) multiplies Lin with the 
sign-magnitude weight, and the results are accumulated in the channel-wise adder tree 
(CAT). Finally, the CA&Q then sums the output of CAT over multiple cycles to generate 
PMACV, which is calibrated by adding the pre-set compensation value in the accumulator 
to obtain MACV (20b for INT8, 23b for BF16A, 21b for BF16B). Because the sign bit of 
the 2's complement Lin[m-1:0] is inversed, converting it into an m-bit unsigned number 
({~Lin[m-1], Lin[m-2:0]} = Lin[m-1:0] + {1,(m-1)’b0}), which is then used in the MAC 
operation with weight magnitude, the overhead of sign-bit computation is therefore 
reduced. Furthermore, since the compensation value is only determined by weights, a 
23b compensation value can be computed by two additional cycles or pre-set offline and 
shared across multiple cycles. In this work, memory bank configuration is achieved 
through the MUX shared by adjacent columns. In BF16 mode, a staggered mapping 
scheme is used for exponents and mantissa, while in INT8 mode, the column select (CS) 
functions as a column decoder, increasing the storage-compute ratio (SCR). 

Figure 14.3.5 presents the performance of the proposed schemes. The serial alignment 
and serial MAC scheme proposed in this work achieves 3.83×, 1.56× reductions in area 
overhead and 1.71×, 1.20× reductions in power consumption compared to previous 
parallel alignment with parallel MAC [6] and parallel alignment with serial MAC schemes 
[1,2]. The proposed N2CMAC computation flow saves computing cycles in different 
networks with varying input precisions, a 19.80%/16.50% reduction for 8b/10b input on 
the ViT (DeiT-S) @ImageNet. Due to the utilization of sign-magnitude format weights, the 
sparsity of negative INT8 weights is significantly improved, showing a 1.83× increase in 
ResNet50 compared to the 2's complement format. The format-mixed N2CMAC circuit 
designed for this computation flow achieves 1.96×, 1.25×, and 1.18× lower power 
consumption, latency, and area overhead compared to traditional 2’s complement MAC 
circuits. 

Figure 14.3.6 presents the measured test chip results, fabricated using a 28nm CMOS 
technology via a 64kb B-A-N2CMAC true FP-CIM macro. For MAC operation in BF16B 
mode, the measured MAC access time was 5.4ns @0.9V for BF16 inputs and weights, 
with FP32 outputs. The maximum energy efficiency and area efficiency are measured to 
be 62.84TFLOPS/W and 697.17GFLOPS/mm2 for BF16 MAC operations from a 
0.55-0.9V supply running ResNet50 @ImageNet. Compared to prior SRAM CIM macros 
[1-5], this work improves the IN × W × memory density × Norm. energy efficiency × output 
ratio FoM by 1.93 – 116.90×. This work can achieve 79.818% inference accuracy when 
employing ViT @ImageNet. Figure 14.3.7 shows the die photo and chip summary table. 
All input/weight sparsity and toggle rates are bit-level and all simulation and 
measurements are obtained at room temperature (300K). 
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Figure 14.3.1: Design challenges of FP-CIM, and solutions of this proposed 

work. 

 

Figure 14.3.2: Overall structure and key features of proposed B-A-N2CMAC true 

FP-CIM macro. 

 

Figure 14.3.3: Detailed schematic and work flow of ESICU. 

 

Figure 14.3.4: Implementation of format-mixed N2CMAC computation flow, and 

memory bank configuration & waveform for different modes. 

 

Figure 14.3.5: Simulated performance of the proposed CIM macro. 

 

Figure 14.3.6: Measurement results and FoM comparison to prior works. 



 

Figure 14.3.7: Die micrograph and chip summary table. 
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